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Abstract—This paper focuses on the non-coherent detection in
ambient backscatter communication, which is highly appealing
for systems where the trade-off between signaling overhead and
the actual data transmission is very critical. Modeling the time-
selective fading channel as a first-order autoregressive (AR)
process, we propose a new receiver architecture based on the
direct averaging of the received signal samples for detection,
which departs significantly from the energy averaging-based
receivers considered in the literature. For the proposed setup,
we characterize the exact asymptotic bit error rate (BER) for
both single-antenna (SA) and multi-antenna (MA) receivers, and
demonstrate the robustness of the new architecture to timing
errors. Our results demonstrate that while the direct-link (DL)
interference from the ambient power source leads to a BER floor
in the SA receiver, the MA receiver can remove this interference
by estimating the angle of arrival (AoA) of the DL. The analysis
further quantifies the effect of improved angular resolution on
the BER as a function of the number of receive antennas. A key
intermediate result of our analysis is the derivation of a new
concentration result for a general sum sequence that is central
to the derivation of the conditional distributions of the received
signal.

Index Terms—Ambient backscatter, non-coherent detection,
auto-regressive model, time-selective fading, bit error rate.

I. INTRODUCTION

Ambient backscatter with its technological capability to sup-
port battery-free communication has shown remarkable poten-
tial in enabling information transfer among energy-constrained
devices within the Internet-of-Things (IoT) paradigm [3]–[5].
Given the diverse nature of applications envisioned in the
IoT ecosystem, the channel conditions experienced by the IoT
devices across different applications could vary significantly
[6]. In the context of this paper, the channel coherence time
experienced by these devices could vary by orders of magni-
tude across applications. For instance, IoT devices deployed
in high mobility scenarios, such as vehicles, road signs, or
traffic posts, are expected to experience higher Doppler spread,
and hence lower channel coherence time, compared to the
IoT devices deployed in relatively static scenarios, such as
homes, offices, and public places. While the latter case has
implicitly been the focus of most of the prior work on ambient
backscatter communication systems, the former is equally, if
not more, important but has received much less attention. Most
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notably, lower coherence time makes it difficult to implement
channel estimation and tracking procedure using either training
or blind estimation. Because of this, one needs to consider
non-coherent detection schemes for such scenarios, which
have not yet been investigated in the context of ambient
backscatter communications. Motivated by this knowledge
gap, this paper focuses on receiver design and comprehensive
performance characterization of non-coherent detection-based
ambient backscatter system under time-selective fading chan-
nels.

A. Related Work

As noted above, the existing literature on ambient backscat-
ter is mainly focused on the slow fading channels that as-
sume a block fading model [7]–[23]. Maximum-likelihood
(ML) detection under an ambient backscatter setup was first
investigated in [8]. The signal detection under non-coherent
and semi-coherent setups is analyzed in [9]–[12]. The signal
detection at a multiple antenna receiver is studied in [13]
and the statistical-covariance based detection is explored in
[14]. While [6]-[12] were based on the Gaussian distribution
approximation for the conditional distributions of the average
energy of the received signal, the exact BER analysis for the
slow fading case was performed in [5]. Interested readers can
also refer to [5] for a detailed overview of the backscatter
concept. Ambient backscatter communication using orthogo-
nal frequency division multiplexing (OFDM) is investigated in
[15], [16]. On the same lines, [17], [18] explored new coding
schemes, such as Manchester coding, to improve detection
performance. Some of the existing literature that have worked
on reducing the affect of the DL interference in ambient
backscatter are [15], [16], [24], [25]. In [24], a MA prototype
is developed which overcomes the affect of DL interference
by estimating the channel using the preamble bits of Wi-Fi.
In [15], the repetitive pattern of the data in OFDM, due to the
use of cyclic prefix, is exploited to cancel the DL interference.
Meanwhile, [16] has designed a non-coherent detector which
totally avoids the DL interference by utilizing the null sub-
carriers in OFDM. In [25], an analog-digital hybrid beam-
former receiver, that designs the optimal beamforming vector
using the AoA of the DL, is proposed for a deterministic line-
of-sight (LOS) channel. However, these works [15], [16], [24],
[25] consider a block fading channel and none of them have
jointly investigated non-coherent detection and time-selective
fading which distinguishes our work.

A general requirement of coherent detection is the trans-
mission of pilot/training symbols from transmitter to receiver
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nodes for the estimation of channel state information (CSI).
This will require some form of cooperation between the pri-
mary and backscatter network nodes which might not always
be possible. Hence, alternate approaches that avoid the trans-
mission of pilots, such as blind channel estimation techniques,
have also been investigated for ambient backscatter [19]–
[23]. These approaches use different techniques from Bayesian
statistics such as expectation-maximization (EM) or space
alternating generalized expectation-maximization (SAGE) to
iteratively implement the maximum a posteriori probability
(MAP) or ML methods to perform the channel estimation
from the received signal directly. The performance of these
techniques depends on the accuracy and the convergence
rate of the blind channel estimation procedures. Therefore,
if the convergence rate is slow, these techniques might not be
suitable for implementation in a time-selective fading channel.
We overcome this drawback by investigating a non-coherent
detection technique that only requires estimating large-scale
parameters.

B. Contributions

To the best of our knowledge, this is the first work that
presents a comprehensive analytical treatment of non-coherent
detection in ambient backscatter under time-selective fading
channels. The time-selective fading channel is modeled using
a first-order AR process, and for this setup a binary hypothesis
testing problem is formulated to investigate the BER perfor-
mance of the two following receivers: 1) single-antenna (SA)
receiver, and 2) multi-antenna (MA) receiver.

New Receiver Architecture: The receiver architecture
used in the prior studies of ambient backscatter requires
the computation of the test statistic (TS) based on the av-
erage energy of the received signal samples. In our work,
we consider a different receiver architecture based on the
direct averaging of the received signal samples which requires
lesser number of operations, thereby reducing the complexity.
Besides, it is more tractable compared to the conventional
architecture as derivations for the optimal detection strategies
in that detector are not easy [7]. In addition, due to the
exclusive linear operations in the new architecture, the receiver
is shown to be resilient to synchronization and timing errors.
By deriving BER for the non-coherent setup, we concretely
demonstrate that while the new architecture is inadequate for
an SA receiver, it has good BER performance when used
in conjunction with a MA receiver, which is attributed to
the elimination of the strong interference generated by the
DL from the power source. The novelty of the MA receiver
designed here lies in its ability to exploit the fact that the
time-scale over which AoA varies is much larger than the
time-scale over which the overall channel gain varies and use
it for tracking the AoA of the DL. As implied already, the
new receiver architecture also results in tractable conditional
distributions, which facilitates the derivation of the optimal
detection strategy and the evaluation of the exact BER.

Asymptotic Growth Rate of a Generalized Sum Sequence:
In the process of deriving conditional distributions, we come
across a sum sequence with correlation across samples. We

investigate the asymptotic growth rate of this sum sequence
and use it to derive a new concentration result for another
specific sequence of interest. This contribution is central to
the evaluation of the exact asymptotic conditional distributions
and to the subsequent BER analysis.

Insights: Our analysis has shown that the SA receiver
quickly reaches a BER floor due to the strong interference
resulting from the DL of the ambient power source. The
performance is shown to improve drastically after canceling
this interference, which is achieved by tracking the AoA of
the DL using the MA receiver. Further, with multiple antennas
it is possible to achieve antenna gain, including an additional
angular resolution when the the number of receive antennas are
increased beyond two. This improvement in angular resolution
plays an important role in applications where the AoAs of the
DL and backscatter link (BL) are similar. The BER with the
new receiver architecture is shown to be independent of the
signal sample-size of the averaging operation for some cases,
such as zero expected value of the ambient data sequence
and/or uncorrelated time-domain fading. For the more general
case of correlated fading, the BER is observed to improve
with increasing time-domain correlation of the fading. Due
to the diminishing returns in the improvement of BER with
increasing sample size, the BER initially decreases and then
reaches an asymptotic value. In addition, the first-order AR
process is shown to be a good approximation of the reference
models available for the time-selective fading channels by
comparing their BER performance under different scenarios.

II. SYSTEM MODEL

A. System Setup and Channel Model
The backscatter system in our current setup has three

devices: ambient power source (PS), backscatter transmitter
(BTx), and receiver (Rx), as illustrated in Fig. 1. The channel
considered in the work is flat Rayleigh faded whose coherence
time is of the order of duration of each ambient symbol, with
spatial correlation at the Rx. The received signal contains
two elements, the DL coming from the ambient PS, and
the backscatter link (BL) reflected from the BTx, with their
respective AoAs given by θ1 and θ2. Both the PS and BTx
can be in motion, due to which the channel gain of the three
links (including the link from PS to BTx) will be changing
with time. As shown in [26], ambient backscatter can achieve
communication with a far away receiver like BS if the PS is
not too far and the receiver can find a way to separate the two
links, which is the primary motivation for the setup shown
in Fig 1. Emerging applications that motivate the selection of
time-selective fading channel for ambient backscatter include
smart fabrics where tags/sensors are integrated into garments
for monitoring vital signs [27], and sensors deployed on the
traffic signs. The impulse response of the channel at Rx
corresponding to the DL and BL links in terms of the dominant
NLOS path and the Rx antenna array response is given as
follows [28], [29]:

h(t) =
N∑
n=1

cne
jφn−j2πcτn/λ+j2πfd cosψnt

︸ ︷︷ ︸
h0(t)

a(θ)δ (t− τ̄) , (1)
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Fig. 1: System model for the ambient backscatter setup.

where the dominant NLOS path can be assumed to be a com-
bination of N independent and non-resolvable sub-paths due
to the presence of local scatterers around the transmitter. The
nth sub-path is characterized by the gain cn, the phase offset
φn, the time delay τn, the maximum Doppler spread (DS) fd,
and the angle of departure (AoD) ψn at the transmitter, as
given in the equation, δ represents the delta function, and τ̄
is the mean of the individual delays τn of the sub-paths. The
remaining parameters a(.) and θ are the Rx antenna array
response vector, and AoA of the NLOS path, respectively.
The phase offset φn of each sub-path is uniformly distributed
over [0, 2π), and the additional phase offset resulting from the
path-delay τn can also be shown to be uniformly distributed
over [0, 2π) since the frequency of operation is very high [30,
Lemma 4]. Applying the central limit theorem (CLT) to the n
independent sub-paths, the magnitude of the variable h0(t) can
be shown as Rayleigh distributed. This channel environment is
illustrated in Fig. 2. The channel described here is valid when
one of the PS or BTx or both are mobile, and the receiver is
located above the rooftops (such as BS) resulting in spatial
correlation across the antennas. The channel of the PS-BTx
link will be similar to h0(t) with additional DS coming from
the local scatterers around BTx.

The rate at which the coefficient h0(t) varies is dependent
on the maximum Doppler spread fd and the angular spread
ψn of the sub-paths at the mobile user. These parameters
are large enough in this case due to the movement of the
user and the presence of local scatterers, resulting in a fast
variation of h0(t). On the other hand, the array response vector
a(.) depends on the AoA θ of the NLOS path. The time-
scale over which this parameter θ evolves is several orders of
magnitude larger compared to the coherence time of h0(t),
and hence can be tracked by the system. Therefore, while
the channel coefficient at the receiver will be changing for
each ambient symbol, the angular variation corresponding to
AoA of the received signal will not change at the same rate
and can be assumed to be constant for few symbol periods.
The MA receiver designed in this work will build on this

v

Fig. 2: Illustration of the time-selective fading channel.

point to improve the BER performance of the system. More
information on this property of the fading channels can be
found in [31]–[33].

Remark 1. The assumption of spatially correlated channel at
the Rx is typically valid for a BS located above the rooftops
as the angular spread is small in these scenarios. We assume
this to be valid for a backscatter device also by considering
a single dominant NLOS path. Handling the case of multiple
angular paths at the Rx is left as a promising future work.
Further, extension of the non-coherent detection approach
proposed in the current work to a frequency-selective channel
is another promising area for future investigation.

The auto-correlation function (ACF) of the fading process
for the DL and BL links is

Eθn,τn,ψ̄ [h0(t)h∗0(t+ td)]

= (
N∑
n=1

|cn|2)Eψ̄[e−j2πfd cos ψ̄td ] = J0(2πfdtd), (2)

where J0(.) is the zero order Bessel function of the first
kind. This result obtained under the assumption of uniformly
distributed azimuthal AoD and unit sum energy of the sub-
paths is known as Clarke’s reference model [34]. Similarly, the
ACF for the PS-BTx link is given by J0(2πfdtd)J0(2πafdtd),
where a is the ratio of the DS at BTx and PS. The Clarke’s
model cannot be exactly realized in practice, and therefore
the Jake’s model based on sum of sinusoids is used to
generate channel samples that have characteristics similar to
the reference model [34].

Autoregressive (AR) modeling of fading channels: Though
Jakes’ sum of sinusoids approach to model the temporal-
fading process is widely used, it requires large number of
sinusoids (and thereby increased complexity) to match the
Clarke’s reference model and is not mathematically tractable.
Hence, this approach is not always convenient to apply
for procedures such as channel modeling, estimation and
equalization. Instead, AR models are used either to decrease
the complexity of generating accurate correlated samples of
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the time-domain fading process or for the derivation of the
equalization parameters [35]–[38]. Therefore, to simplify the
analysis, the time-selective fading channel in our work is
modeled as an AR process. The correlation matching (CM)
criterion of the AR model imposes a condition that the ACF
of the approximated process matches the sampled ACF of the
Jakes’ model. An AR process of order p is given by [35]:

h[n] =

p∑
k=1

akh[n− k] + v[n], (3)

where v[n] is a complex white Gaussian noise process with
uncorrelated real and imaginary components. In the case of
Rayleigh fading, v[n] has zero mean. The parameters related
to the AR model are given by {a1, a2, ..., ak} and the variance
of v[n] by σ2

p. The ACF of this approximated process of order
p matches exactly with the samples of the desired ACF upto
p taps. The accuracy of this modeling approach using AR
process increases with higher order approximations. However,
as shown in [39], the first order AR model obtained by
setting p = 1 is a sufficiently accurate model which can be
represented as [36]:

h[n] = ρ h[n− 1] +
√

1− ρ2 g[n], (4)

where h[n] and h[n− 1] are the channel gains in the current
and previous time periods, g[n] is the complex white Gaussian
noise process with variance σ2

h, and ρ ∈ [0, 1) is the correlation
between the fading coefficients of the consecutive symbols.
Depending on the link, the correlation factor ρ is given by
either J0(2πfdTs) or J0(2πfdTs)J0(2πafdTs), where Ts is
the symbol duration. The value of ρ determines the rate at
which the current channel coefficient de-correlates across time.
The recursive relation in (4) can be written in the direct form
as:

h[n] = ρn−1h[1] +
√

1− ρ2

{
n−1∑
k=1

ρn−k−1g[k]

}
. (5)

Note that the modeling of the time-selective fading using the
first order AR process in the current work is a good first step,
and can be extended to a higher order AR process in future
studies.

Remark 2. The time-selective fading implicitly handles the
extreme cases of independent fading (ρ = 0) and highly
correlated fading (lim ρ → 1−). However, the block fading
obtained by configuring ρ = 1 requires a separate analysis,
and will be handled separately in a future work.

B. Signal Model

In general, the signal scattered from the backscatter device
to the receiver is given by [40]:

r = (A− Γ) s = As− Γs, (6)

where r is the signal at the receiver, s is the signal backcattered
at the device, A is the load-independent complex coefficient
of the device, and Γ is the reflection coefficient of backscatter
node at the boundary of the antenna and the circuit. The
device modulates the signal by varying the load impedance

to change the parameter Γ that controls the reflected signal.
The first and second terms in (6) correspond to the structural
mode and antenna mode scattering components, respectively.
A binary modulation scheme can be implemented by choosing
two different values Γ0 and Γ1. As shown later, non-coherent
detection will result in good error performance only for the
case of OOK modulation. It is possible to achieve this modu-
lation for antennas with |A| ≤ 1 by designing the appropriate
load impedance using only passive components [41], [42].

Since the data rate of most IoT applications is rather small,
it is reasonable to assume that the data rate of backscatter
is lower compared to that of the ambient symbols. Under
this assumption, a single variable is enough to represent the
backscatter data for a signal sample set of size N . The signal at
the SA receiver is the summation of the direct and backscatter
signals, which can be mathematically represented as follows:

y[n] = hr[n]x[n]︸ ︷︷ ︸
direct signal

+αb hb[n] ht[n]x[n]︸ ︷︷ ︸
backscatter signal

+w[n],︸ ︷︷ ︸
AWGN

(7)

where x[n] is the ambient symbol sequence in complex
baseband, w[n] is the additive complex Gaussian noise,
hr[n], hb[n] and ht[n] are i.i.d. zero mean complex Gaussian
channel coefficients with variance σ2

h, b is the backscatter
data, α is related to the parameter Γ1 of the BTx node.
The channel coefficients hr[n], hb[n] and ht[n] are modeled
using the AR process of order 1, each having a different
correlation factor given by ρr, ρb, and ρt, respectively. Since
non-coherent detection does not require the CSI, the channel
gains hr[n], hb[n] and ht[n] are unknown at the Rx. The
received signal at the MA receiver with antennas Mr ≥ 2
is given by:

y[n]=


y0[n]
y1[n]

...
yMr−1[n]

=hr[n]


1
ejφ1

...
ej(Mr−1)φ1

x[n]

+ αbhb[n]ht[n]


1
ejφ2

...
ej(Mr−1)φ2

x[n]+


w0[n]
w1[n]

...
wMr−1[n]

, (8)

where the phase offset φi between consecutive antenna ele-
ments for each link is given by 2π

λ d cos θi for a linear uniform
antenna array. Note that the AoA θ2 of the BL is independent
of the AoA θ1 of the DL.

The null and alternate hypotheses of the binary hypothesis
testing problem are denoted as H0 and H1, respectively. The
BTx modulates the backscatter data using the binary on-off
keying (OOK) modulation scheme. As is generally the case,
the ambient symbol sequence x[n] is assumed to be i.i.d., with
unit energy on average. We also assume that the noise energy
σ2
n, the average channel energy σ2

h, and the correlation factors
ρr, ρb, and ρt are known at the receiver. In fact, they can be
perfectly estimated with a long observation interval under the
assumption that they remain constant, which is true as they
are large-scale parameters.
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Test Statistic (TS): Due to the reasons outlined in contribu-
tions, the receiver architecture is based on the TS of the mean
of the received signal samples, unlike the conventional TS of
the average energy of the received signal samples. The new
TS can be mathematically denoted as:

Z =
1

N

N∑
n=1

y[n] (9)

It should be noted that derivation of the optimal TS for the
time-selective channel is still an open problem. In fact, the
optimality of the TS, although important in general, has not
really been the main focus of the receiver design for ambient
backscatter systems. Some very recent work on the optimal
detection and the selection of testing variable for a non-
coherent detector under block fading channel can be found
in [43], [44].

III. DETECTION AT A SINGLE ANTENNA RECEIVER

In this section, we initially derive the growth rate of the
expectation and variance of the generalized sum sequence of
interest. This result is then used to evaluate the conditional dis-
tributions of the signal of the two hypotheses, and ultimately
the BER of the SA receiver.

A. Growth Rate of a Generalized Sum Sequence of Interest

Consider the general sum sequence SN given by

SN=
∑
n1,n2

ρ|n1−n2|x[n1]x∗[n2],

defined as the sum of non-i.i.d. RVs, which plays an important
role in the signal detection procedure. In particular, the asymp-
totic property of the sum sequence given by MN = SN

N is
required to derive the conditional distributions. For this setup,
if we can show that the growth rate of both the expectation
and variance of SN is of the order of N (the number of
samples), that is sufficient to conclude that the sequence MN

converges to its mean value as the sample size tends to infinity.
Using the Chebyshev inequality, it is possible to show that
this will indeed be the case if the higher order moments of
the RV X representing the i.i.d. ambient data sequences x[n]
are finite. These conditions on the moments of x[n] might be
stronger than necessary but are nevertheless reasonable and
assumed here to simplify the derivation. One of the second
order moments of the ambient sequences x[n] is the sample
energy which is given by:

Ē = E
[
|X|2

]
=

1

N

N∑
n=1

|x[n]|2. (10)

The result capturing the growth rate of SN is provided in
the following Lemma. Note that one has to be careful in
deriving these concentration results since the sum sequence
SN is not composed of i.i.d elements. Please see the proof of
the following Lemma for more details.

Lemma 1. The expectation and variance of the sum se-
quence SN both grow asymptotically of the order of N , i.e.,
E[SN ] = Θ(N) and Var[SN ] = Θ(N), where f(x)=Θ(g(x))
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Fig. 3: Probability density functions of (a) MN and (b) Mb
N for

varying N with ρ = 0.6.

means that f(x) is asymptotically bounded both from above
and below by g(x). As a consequence, the sequence MN

concentrates around E[MN ] when N →∞, where

E [MN ] = E
[
|X|2

]
+

2ρ

1− ρ

(
1− 1− ρN

N(1− ρ)

)
|E[X]|2. (11)

Proof: See Appendix A.
The analysis related to Lemma 1 on the asymptotic growth

rate of SN is discussed now by plotting the simulation results.
The plots for the distributions of MN and M b

N (another
sequence corresponding to the backscatter link component,
defined in Sec. III-B while deriving the conditional distribution
of alternate hypothesis) with increasing sample size N are
shown in Figs. 3a and 3b, where it can be observed that the
mean values remain constant while their variances decrease as
the signal sample size increases.

B. Conditional Distributions of the Signal

The null and alternate hypotheses H0 and H1 correspond
to the scenarios of the transmitted backscatter data b ≡ 0 and
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b ≡ 1, respectively.
1) Null Hypothesis H0: For the AR process used in this

paper to model the time-selective fading, the channel gain
evolves with time according to (4), which can be described
as a weighted average of the previous channel gain and a new
variable. Due to this dependence of the current channel gain on
the previous gains, the received signal samples are correlated,
and hence the co-variances of the samples are non-zero in
general. As a consequence, both the variances and co-variances
of the signal has to be evaluated to derive the variance of
the the mean received signal Z. We transform the expression
for each received signal sample into a sum representation of
independent RVs. This will simplify the evaluation of both the
variance of each signal sample and the subsequent evaluation
of the variance of Z. This can be represented as following:

y[n] = hr[n]x[n] + w[n]

=

(
ρn−1
r hr[1]+

√
1−ρ2

r

{
n−1∑
k=1

ρn−k−1
r gr[k]

})
x[n]+w[n],

(12)

where the channel gain hr[1] in the first time slot of a window
can be independently configured.

Lemma 2. The probability density function (PDF) of Z
conditioned on H0 is given by

H0 : Z ∼ CN
(
0,VarSA

0

)
, (13)

where VarSA
0 =

σ2
hE[|X|2]+σ2

h
2ρr

1−ρr

(
1− 1−ρNr

N(1−ρr)

)
|E[X]|2+σ2

n

N is the
conditional variance of H0.

Proof: See Appendix B.
2) Alternate Hypothesis H1: The received signal for a

sample n, where 1 ≤ n ≤ N , under the alternate hypothesis
H1 is given by:

y[n] = hr[n]x[n] + αhb[n]ht[n]x[n]︸ ︷︷ ︸
yb[n]

+w[n], (14)

where hr[n], hb[n] and ht[n] are the fading gains following
the process defined by (5). Unlike the case of H0, fur-
ther work is needed to derive the distribution for H1 since
the conditional distribution of each sample is not complex
Gaussian anymore. However, we preserve the Gaussian prop-
erty of the samples by further conditioning on hb[n] and
show that this conditional distribution asymptotically matches
the true distribution. Only the distribution corresponding to
yb[n] is needed to be derived and the sequence M b

N =∑
n1,n2

ρ
|n1−n2|
t hb[n1]h∗b [n2]x[n1]x∗2[n2] related to yb[n] is the

corresponding parameter of H1, similar to MN of H0. The
following Lemma captures this analysis on the conditional
distribution of H1.

Lemma 3. The PDF of Z conditioned on H1 is given by

H1 : Z ∼ CN
(
0,VarSA

1

)
, (15)

where

VarSA
1 =

σ2
h(1+|α|2σ2

h)E
[
|X|2

]
+σ2

h

[
2ρr

1−ρr

(
1− 1−ρNr

N(1−ρr)

)
+|α|2σ2

h

2ρtρb
1−ρtρb

(
1− 1−ρNt ρNb

N(1−ρtρb)

)]
|E [X]|2+σ2

n

N
.

is the conditional variance of H1.

Proof: See Appendix C.
The results are valid for all ρr, ρb and ρt ∈ [0, 1), and the

special case of independent fading analyzed in the conference
version [2] can be obtained by configuring ρr, ρb and ρt all
to zero.

C. Bit Error Rate

From the conditional distribution analysis, we see that the
PDFs of the two hypotheses have same mean but different
variances, which are compared to obtain the optimal detection
threshold.

Theorem 1. The average BER of a SA receiver is given by

PSA(e) =
1

2
− 1

2
e
− TSA

VarSA1 +
1

2
e
− TSA

VarSA0 , (16)

where TSA = ln
(

VarSA1
VarSA0

)
VarSA1 VarSA0

VarSA1 −VarSA0
is the optimal detection

threshold.

Proof: See Appendix D.
Asymptotic analysis: The ratio of the variances of H0 and
H1 of the SA receiver is:

K =
VarSA

1

VarSA
0

=

1 +
|α|2σ4

h

{
1 + 2ρtρb

1−ρtρb

(
1− 1−ρNt ρ

N
b

N(1−ρtρb)

)
|E[X]|2
E[|X|2]

}
σ2
h

{
1 + 2ρr

1−ρr

(
1− 1−ρNr

N(1−ρr)

)
|E[X]|2
E[|X|2]

}
+ SNR−1

. (17)

The asymptotic average BER can be simplified as follows:

P asym
SA (e)

(a)
= lim

SNR→∞

1

2
(1−K

−1
K−1 +

1

K

1

1− 1
K )

(b)
=

1

2
(1−K

−1
K∞−1
∞ +

1

K∞

1

1− 1
K∞ ), (18)

where (a) results from the substitution of the expression for
TSA and replacing the ratio VarSA1

VarSA0
with K defined earlier, and

(b) follows from the substitution of K with K∞ obtained as
SNR→∞.

Remark 3. Clearly, the BER expressions under the new
receiver architecture are independent of N when the expec-
tation E [X] of the ambient data sequence is zero and/or
the time-domain fading is uncorrelated (all the ρ’s equal 0).
Furthermore, the asymptotic BER value, with respect to the
increasing SNR, reaches an error floor instead of converging
to zero. This error floor is numerically demonstrated later in
Fig. 5a. This necessitates the need to develop better techniques
to decode data in a time-selective channel, which takes us to
the next main contribution.
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IV. DETECTION AT A MULTI-ANTENNA RECEIVER

A. Effective Signal and Antenna Gain

The main reason for the poor BER performance of the
SA receiver is the presence of the DL from the ambient PS,
which only acts as an interference since it does not carry any
backscatter data. The signals impinging on the neighboring
antenna elements are phase shifted versions of the signal at
the first antenna in addition to the independent additive noise.
Observe that the phase offset of the BL is independent of
the phase offset of the DL. The interference of the DL can
be canceled by reversing the DL phase offset at each antenna
starting from the second element, and subtracting the resultant
signal with that at the first antenna, as given below:

ỹ[n] =

 e−jφ1y1[n]− y0[n]
...

e−j(Mr−1)φ1yMr−1[n]− y0[n]


= ãαbhb[n]ht[n]x[n] + w̃[n], (19)

where the effective antenna array and noise vectors ã and
w̃[n], respectively, are given by:

ã =


2 sin(φ2−φ1

2 )ej(
φ2−φ1

2 )

...
2 sin(Mr − 1)(φ2−φ1

2 )ej(Mr−1)(
φ2−φ1

2 )

 , (20)

w̃[n] =

 e−jφ1w1[n]− w0[n]
...

e−j(Mr−1)φ1wMr−1[n]− w0[n]

 . (21)

The covariance matrix of the resultant noise vector w̃[n] is
given by:

KW̃ = σ2
nK̂W̃, where K̂W̃ =

2 1 . . . 1
...

...
. . .

...
1 1 . . . 2

 , (22)

which means that the resultant noise after the DL cancellation
is correlated. The vector detection problem can be converted to
scalar detection by appropriately designing the weight vector.
The effective scalar signal samples for the averaging operation
can be obtained by the following steps: 1) Whiten the additive
noise with the linear transformation K̂

− 1
2

W̃
, and 2) Project the

output of the first step along the direction of the resultant
antenna array response K̂

− 1
2

W̃
ã. The combined weight vector

of the two operations is r =
K̂−1

W̃
ã

|K̂
− 1

2
W̃

ã|
, and the effective signal

after these steps is:

yeff [n]=r∗ỹ[n]=
ã∗K̂−1

W̃
ã

|K̂−
1
2

W̃
ã|
αbhb[n]ht[n]x[n]+

ã∗K̂−1
W̃

|K̂−
1
2

W̃
ã|
w̃[n].

(23)

Hence, the gain in the average signal power with multiple
antennas is ã∗K̂−1

W̃
ã, while the noise power remains at σ2

n.
Therefore, the antenna gain (SNR) due to multiple antennas
is given by ã∗K̂−1

W̃
ã. This procedure to generate the scalar

sample yeff [n] maximizes the SNR of the signal. In addition

the resultant sample yeff [n] is a sufficient statistic for the
detection procedure that follows. It can be further shown that
this procedure also minimizes the mean square error for the
signal estimation, and is hence known as the linear minimum
mean squared error estimation (MMSE) [45]. The phase-offset
components ejφ1 and ejφ2 of the two links can be estimated
from the received signal by formulating a parameter estimation
problem. However, this is beyond the scope of the current
work, and hence they are assumed to be perfectly known at

the receiver. The sample average given by Z = 1
N

N∑
n=1

yeff [n]

is used as the new test statistic for detection.

Lemma 4. The antenna (SNR) gain G = ã∗K̂−1
W̃

ã of the MA
receiver is given by:

G=Mr−
1

Mr
− 2

Mr

sin
(
(Mr−1)φ2−φ1

2

)
sin
(
φ2−φ1

2

) cos

(
Mr

2
(φ2 − φ1)

)

− 1

Mr

sin2
(

(Mr−1)φ2−φ1

2

)
sin2

(
φ2−φ1

2

) . (24)

Proof: See Appendix E.
For notational simplicity, the antenna gain is represented as

a single variable G without any input arguments even though
it is a function of the two phase offsets (and hence the AoAs).

Remark 4. The antenna gain of a dual-antenna Rx (Mr = 2)
simplifies to G = 2 sin2

(
φ2−φ1

2

)
, which is zero when the

AoAs of the DL and BL links are almost the same. On the
other hand, the antenna gain G for a Rx with Mr > 2 equals
(1− 1

Mr
)(Mr−2), which is non-zero even when the two AoAs

are almost the same. Hence, additional angular resolution is
obtained with Mr > 2, which is useful for the applications
where the AoAs of the DL and BL links are similar.

B. Conditional Distributions of the Effective Signal and Bit
Error Rate

Now, we derive the conditional distributions of the effective
signal derived in (23), and then use them to evaluate the
average BER of the MA receiver.

Lemma 5. The conditional PDFs of Z for the two hypotheses
H0 and H1 are given by

Hi : Z ∼ CN
(
0,VarMA

i

)
, (25)

where the variance parameters are given by VarMA
0 =

σ2
n

N and

VarMA
1 =

G|α|2σ4
h

{
E[|X|2]+ 2ρtρb

1−ρtρb

(
1− 1−ρNt ρ

N
b

N(1−ρtρb)

)
|E[X]|2

}
+σ2

n

N .

Proof: See Appendix F.

Theorem 2. The average BER of the MA receiver is given by:

PMA(e)=

π∫
−π

π∫
−π

1

8π2

(
1−e

− TMA
VarMA

1 +e
− TMA

VarMA
0

)
dθ1dθ2, (26)

where TMA = ln
(

VarMA
1

VarMA
0

)
VarMA

1 VarMA
0

VarMA
1 −VarMA

0
is the optimal detec-

tion threshold.
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Proof: See Appendix G.
It should be noted that the SA scenario is not exactly a spe-

cial case of the MA scenario, even though there are similarities
in the non-coherent detection approach and the subsequent
bit error rate evaluation of the two receivers. Mainly, the
additional operation of the DL interference cancellation in the
MA scenario results in an effective antenna array vector and
correlated additive noise, which necessitates the handling of
the MA receiver separately from the SA receiver.

Asymptotic analysis: The ratio of the variances of H0 and
H1 of the MA receiver is:

K =
VarMA

1

VarMA
0

=

1+G|α|2σ4
h

{
1+

2ρtρb
1−ρtρb

(
1− 1−ρNt ρNb

N(1−ρtρb)

)
|E [X]|2

E [|X|2]

}
SNR.

(27)

From this, the asymptotic conditional BER of the MA receiver
as SNR→∞ can be derived as:

P asym
MA (e|φ1, φ2) =

1

2
(1− e

− TMA
VarMA

1 + e
− TMA

VarMA
0 )

(a)
=

1

2
(1−K

−1
K−1 +

1

K

1

1− 1
K )

(b)
= 0, (28)

where (a) results from substituting the expression for TMA, and
replacing VarMA

1

VarMA
0

with K defined in (27), and (b) follows from
the standard limit lim

x→∞
(x)−1/x−1 = 1, and 1

K → 0 as SNR→
∞. It should be noted that the asymptotic value of K when
N → ∞ is non-zero. Hence, the BER does not converge to
0.5 as N →∞ even though the individual variances converge
to zero.

Remark 5. In case of fast-fading, where the fading gains are
independent across the ambient symbols, the average BER is
only dependent on the expected value of the energy of the
ambient symbol. This special case concurs with our analysis
in [2]. Alternatively, if the mean value of the ambient symbol
is zero (which is the case for most of the modulation schemes),
then again the average BER is only dependent on the expected
value of the energy. Lastly, it can be inferred from the BER
expression that the average BER is an increasing function of
the correlation factor.

V. RECEIVER SYNCHRONIZATION AND PARAMETER
ESTIMATION

A. Delay Parameters

In this section, we discuss receiver synchronization in
ambient backscatter, which is an important ingredient of
the proposed system design. First, we briefly mention the
parameters to be estimated, and then either provide an analysis
of the impact of incorrect estimation of the parameter on
the detection performance or provide a procedure to esti-
mate the parameter. In general, the estimation of both the
timing delay and the carrier phase offset is necessary in a
communication system. In our setup, however, carrier phase
estimation is not required since non-coherent detection is
employed. As the symbol duration of the backscatter data

is larger than that of the ambient data, it is not required
to perform symbol synchronization at the backscatter device.
Therefore, the symbol timing recovery at the receiver is our
main concern. The parameters Ta and N represent the duration
of the ambient symbol and the sample window size at the
receiver, respectively, which are assumed to be known a priori.
The duration of the backscatter symbol Tb is related to the
above two parameters as Tb = NTa. Due to the architecture
adopted at the receiver, it needs to estimate the following
parameters: (i) the timing delay τ ∈ [0, Ta) of the ambient
data to obtain signal samples correctly, and (ii) the sample
number k ∈ {0, 1, 2, · · · , N − 1} to reset the counter of
the signal sample window. The estimation of the delay τ for
time-selective fading channels is a well-studied topic, where
correlation-based techniques are widely used to solve the ML
estimation problem [46]. However, before going into those
details, it would be worthwhile to investigate how significant
would be the impact of incorrect estimation of the delay
(given by τ̂ ) on the achievable BER. For the purpose of
exposition, we assume that the pulse shape of the ambient
symbols is rectangular, and hence the matched filter pulse is
also rectangular. Due to the mismatch of the estimated delay,
the discrete samples obtained at the SA receiver after the
matched filtering can be represented as:

y[n] =
∆τ

Ta
ejφrhr[n− 1]x[n− 1] +

Ta −∆τ

Ta
ejφrhr[n]x[n]

+
∆τ

Ta
ejφbαht[n− 1]hb[n− 1]x[n− 1]

+ ejφrαht[n]hb[n]
Ta −∆τ

Ta
x[n] + w[n],

where ∆τ = τ− τ̂ ∈ [0, Ta) equals the difference of the actual
and the estimated path delays.

For a window of samples, the average of the samples will
simplify as follows:

Z =
1

N

N∑
n=1

y[n] =
ejφr

N

(∆τ

Ta
hr[−1]x[−1] +

N−1∑
n=1

hr[n]x[n]

+
Ta −∆τ

Ta
hr[N ]x[N ]

)
+
ejφbα

N

(∆τ

Ta
ht[−1]hr[−1]x[−1]

+
N−1∑
n=1

ht[n]hb[n]x[n]+
Ta −∆τ

Ta
ht[N ]hb[N ]x[N ]

)
. (29)

From (29), it is clear that the impact of the timing recovery
error on Z (and hence on the BER) will be negligible. In fact,
due to the linear averaging operation of the new architecture,
the receiver is robust to synchronization errors, and it does not
require the estimation of delay τ .

For the other parameter of interest k, a procedure for
estimation is provided. Suppose that backscatter device sends
a preamble sequence of alternating bits 1010 · · · 10 (of length
Nb), and the index k represents the delay reset of the counter
corresponding to the window of signal samples. It should be
noted here that the alternating bit sequences are commonly
used in conventional networks for clock and frame synchro-
nization, e.g., see [47]. The sample mean corresponding to
backscatter symbols of ′0′ and ′1′ taken with a delay l
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are denoted as Zl0 and Zl1, respectively. For the purpose of
exposition, assume that the delay k is zero. When the sampling
window is aligned properly, the energy of the average of the
samples |Z0

0 |2 and |Z0
1 |2 corresponding to symbols ′0′ and

′1′ can be approximated by VarSA
0 and VarSA

1 , respectively.
Since, the received signal corresponding to symbol ′1′ has both
the DL and BL links, VarSA

1 is higher compared to VarSA
0

resulting in the ratio |Z0
1 |
|Z0

0 |
= C > 1. When the sampling

window is misaligned by exactly half the window size N ,
then both Z

N/2
0 and Z

N/2
1 contain equal number of ambient

symbols that correspond to backscatter symbols ′1′ and ′0′,
resulting in the ratio |ZN/21 |

|ZN/20 |
= 1. In fact, the ratio |Zl1|

|Zl0|
for

a general delay l will lie in the interval (1, C). From this,
one can conclude that |Z

l
1|
|Zl0|

is maximized when the sample
window is aligned to the delay k, and therefore the problem
of estimating the parameter k can be formulated as following:

k̂ = arg max
l∈{0,1,···N−1}

|Zl1|
|Zl0|

. (30)

B. Correlation Factor and Phase Offset Inversion Parameters
Supposing that the delay k is perfectly estimated in the

synchronization module, consider the consecutive samples
yk0 [n] and yk0 [n + 1] corresponding to the preamble bit 0 at
the SA receiver. Taking cross-correlation of the two signals,
the DL correlation factor ρr can be evaluated as:

E[yk0 [n](yk0 [n+ 1])∗]

= E [(hr[n]x[n] + w[n])((h∗r [n+ 1]x∗[n+ 1] + w∗[n+ 1])]

= ρrE
[
|hr[n]|2

]
|E [X]|2 = ρrσ

2
h|E [X]|2

=⇒ ρr =
E[yk0 [n](yk0 [n+ 1])∗]

σ2
h|E [X]|2

. (31)

Similarly, the combined correlation factor ρtρb of the BL can
be evaluated as follows:

ρtρb =
E[yk1 [n](yk1 [n+ 1])∗]− E[yk0 [n](yk0 [n+ 1])∗]

|α|2σ4
h|E [X]|2

. (32)

Now, consider the parameters Zk0 and Zk1 of the MA receiver
for deriving the phase offset inversion components e−jφ1 and
e−jφ2 . Next, we provide a method to determine e−jφ1 of the
DL at the receiver. The samples corresponding to the preamble
bit 0 at the consecutive antenna elements m and m+ 1 of the
MA receiver are given by:[

yk0,m[n]
yk0,m+1[n]

]
= hr[n]ejmφ1

[
1
ejφ1

]
x[n] +

[
wm[n]
wm+1[n]

]
.

Taking the mean over samples for each preamble symbol of
value 0 will result in:

Zk0 =

N∑
n=1

yk0 [n]

N
=


N∑
n=1

yk0,m[n]

N

N∑
n=1

yk0,m+1[n]

N



=
N∑
n=1

hr[n]ejmφ1x[n]

N

[
1
ejφ1

]
+


N∑
n=1

wm[n]
N

N∑
n=1

wm+1[n]
N

=c0

[
1
ejφ1

]
+

[
n0

n1

]
,

where c0∼CN
(
0, 1
N

{
E
[
|X|2

]
+ 2ρr

1−ρr

(
1− 1−ρNr

N(1−ρr)

)
|E [X]|2

}
σ2
h

)
,

n0 ∼ CN (0, 1
N σ

2
n) and n1 ∼ CN (0, 1

N σ
2
n).

Taking cross-correlation between the first and second ele-
ments of Zk0 , we get:

E

[
N∑
n=1

yk0,m[n]

N

N∑
n=1

(yk0,m+1)∗[n]

N

]
= E

[
|c0|2

]
e−jφ1 + E [c0n

∗
1] + E

[
c∗0e
−jφ1n0

]
+ E [n0n

∗
1]

=
1

N

{
E
[
|X|2

]
+

2ρr
1−ρr

(
1− 1−ρNr

N(1−ρr)

)
|E [X]|2

}
σ2
he
−jφ1

=⇒ e−jφ1 =

E
[
N∑
n=1

yk0,m[n]

N

N∑
n=1

(yk0,m+1)∗[n]

N

]
1
N

{
E [|X|2]+ 2ρr

1−ρr

(
1− 1−ρNr

N(1−ρr)

)
|E [X]|2

}
σ2
h

.

A better estimate can be obtained by averaging over all the
possible values of m as follows:

e−jφ1 =

Mr−2∑
m=0

E
[
N∑
n=1

yk0,m[n]

N

N∑
n=1

(yk0,m+1)∗[n]

N

]
Mr−1
N

{
E [|X|2]+ 2ρr

1−ρr

(
1− 1−ρNr

N(1−ρr)

)
|E [X]|2

}
σ2
h

.

(33)

Since this averaging operation over different antenna elements
has independent noise terms, the accuracy of the estimate
improves with the increasing value of Mr. The root mean
square error (RMSE) of the DL AoA as a function of the
SNR is shown in Fig. 4a. As expected, the RMSE improves
with the increasing SNR. The BER performance of the MA
receiver over the RMSE values of interest is plotted in Fig.
4b. Using a similar method for estimating the AoA of the BL
does not result in good RMSE performance, which is mainly
attributed to the interference from the DL. Hence, alternate
techniques are necessary to accurately estimate the AoA of the
BL, and one potential method is to utilize the residual signal
from the DL cancellation operation for the AoA estimation.
Due to space limitations, it was not possible to include it in
this paper and is hence left as a promising future work.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, the accuracy of our analysis is verified by
comparing with Monte-Carlo simulations. In addition, some
useful system design insights are also provided. The reflection
coefficient Γ1 is configured appropriately to set the parameter
α that will result in a signal attenuation of 1.1 dB, and
the variance of the fading gain σ2

h is set to 1. The BER
performance of the two receivers related to the special cases
of independent fading (ρ = 0) and/or ambient sequence
with zero expectation (E [X] = 0), are compared in Fig.
5a. We observe that with increasing SNR, the BER saturates
quickly for a SA receiver without any further improvement.
This behavior can be attributed to the dependence of a non-
coherent detector on differences in the conditional variances of
the received symbol. With the strong interference from power
source, the variances of the two hypotheses scale similarly
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Fig. 4: (a) Root mean square error (RMSE) values of the es-
timated AoAs for the direct link (DL), and (b) BER perfor-
mance comparison with estimation errors in AoA with ∆θ =
{0, 0.05, 0.10, 0.15, 0.20, 0.25}.

with increasing SNR. On the other hand, as shown in Fig.
5a, the MA receiver can drastically improve the BER by
removing the direct path from the ambient power source. In
this case, BER decreases continuously without reaching any
error floor. When the interference from the DL is removed
in the MA receiver, only the variance of alternate hypothesis
scales proportionally to the increasing SNR which ultimately
results in the improved BER. Further, the average BER under
these two cases is independent of the signal sample size N
as shown in Fig. 5b. The effectiveness of the proposed DL
cancellation technique is verified by comparing the BER of
MA and SA receivers with and without the DL interference,
respectively. As shown in Fig. 5a, performance of the SA
receiver without DL is better compared to the MA receiver
with DL. This is expected because the BER of the MA receiver
is averaged over the joint distribution of AoAs θ1 and θ2, and
the performance is limited when the AoAs are similar.

The results for more general cases are discussed now.
Unless specified explicitly for the particular plot, the values of
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Fig. 5: (a) BER comparison of the SA Rx and the MA Rx with
Mr = 2 under independent fading and/or ambient sequence with
E [X] = 0, and comparison of the MA Rx with DL and the SA Rx
without DL is also shown. (b) BER performance of the MA Rx with
increasing N .

different correlation factors ρr, ρb, and ρt are all considered
equal and represented as ρ. The error floor in a SA receiver
decreases with correlation factor ρ, as shown in Fig. 6a, and
it can be inferred that a SA receiver is insufficient for non-
coherent detection as the error floor values are very close to
0.5, which corresponds to the BER of a naive hit/miss receiver.
From Fig. 6a, it can also be verified that the numerically
obtained BER floor values of the SA receiver match with the
asymptotic BER analytically derived in (18). The waterfall
curve, as shown in Fig. 6b, validates our asymptotic BER
analysis presented in (28) for the MA receiver with unequal
values for different correlation factors. The BER performance
with increasing SNR in a MA receiver for different values of
the correlation factor ρ is presented in Fig. 7a, where it can be
seen that the BER improves with increasing ρ. Likewise, the
BER performance with increasing sample size N for varying ρ
is shown in Fig. 7b, and interestingly the BER increases and
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Fig. 6: (a) BER performance and the error floor of the SA Rx for
different ρ, (b) BER comparison of the MA Rx with Mr = 9 for
changing ρb, and the other parameters configured to ρr = 0.5 and
ρt = ρrρb.

saturates quickly with increasing N . However, as expected,
there is an increasing mismatch between the simulated and
theoretical results of BER at lower values of N as the value
of ρ is increased. This mismatch occurs due to the need of
a larger sample-size N for the averaging operation, so that
the simulation and theoretical results converge with increasing
ρ. The BER improvement observed with increasing ρ and N
can be attributed to the increment in variance of the alternate
hypothesis while the variance of the null hypothesis remains
constant. The antenna gain achieved with additional antennas
is presented in Fig. 8a, that shows around 8 dB gain with the
doubling of antennas. The simulation result for the analysis in
Remark 4, corresponding to the additional angular resolution
achievable with antennas beyond two, is shown in Fig. 8b.
For this comparison, one can assume the AoA θ1 of the DL
to be uniformly distributed between (−π, π], and the AoA
θ2 of the BL to be uniformly distributed with mean θ1 and
width ∆θ = 10◦. The results of the plot demonstrate that
while the BER of the dual-antenna Rx is close to 0.5, an

antenna gain of around 9 dB is achieved with the doubling of
antennas in this case. The comparison between AR and Jakes’
channel models discussed in Sec. II-A is shown in Fig. 9a. Two
scenarios are considered for comparison: 1) speed of PS and
BTx are both 150 kmph, and 2) speed of PS and BTx are both
5 kmph. The corresponding values of the correlation factors for
a signal of bandwidth 1.5 KHz turns out to be: 1) ρr = 0.74,
ρb = 0.74 and ρt = 0.55, and 2) ρr = 0.99, ρb = 0.99 and
ρt = 0.99. The BER performance of our proposed approach
for the AR model is similar to that of the Jakes’ channel
under these two scenarios. We checked many other scenarios
and noticed a close match in all of them. We can therefore
conclude that the simplified AR model approximates the actual
complex time-selective channel very closely, while endowing
tractability to the analysis. The approximation can be further
improved by using a higher order AR process for modeling
the time-selective fading channel. Finally, as shown in Fig. 9b,
the impact of timing recovery errors is shown to be negligible,
which corroborates our timing analysis in Section V.

VII. CONCLUSION

Ambient backscatter systems have mainly been studied
for low mobility scenarios that are modeled using a block
fading channel. While the block fading model is sufficient for
stationary environments like home and office, a time-selective
fading model is more suitable for non-stationary environments,
such as roads and campuses. Therefore, in this paper, we
have investigated the performance of an ambient backscatter
system by studying the design and BER of a non-coherent
detector under time-selective fading channels. To the best of
our knowledge, this is the first work that has incorporated both
non-coherent detection and time-selective fading into the am-
bient backscatter setup. Unlike the conventional architecture,
which is implemented using the average of the energy of the
received signal samples, a new receiver architecture based on
the direct average of the signal samples is proposed. The new
architecture is simpler to implement, robust to timing errors,
and lends tractability to the asymptotic analysis. We have
shown in the analysis that a BER floor exists for the SA re-
ceiver due to the DL interference of the ambient power source,
thereby resulting in an unacceptable performance. The BER is
drastically improved using a MA receiver by tracking the AoA
of the DL and using it to eliminate the interference. Further,
having more than two receive antennas allows additional
angular resolution, which can support applications where the
AoAs of the DL and BL links are very close. Though the BER
in the time-selective fading improves with increasing signal
sample-size, it saturates to an asymptotic value. Additionally,
the BER is observed to improve with increasing temporal-
correlation of the fading channel. By comparing the BER,
the simple first-order AR process is shown to be an effective
approximation of the Clarke’s reference model available for
the time-selective fading channel. A natural extension of this
work is to implement an ambient backscatter system that
can function in a channel with multiple angular paths at the
receiver.
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Fig. 7: (a) BER vs SNR comparison of the MA Rx with Mr = 2 for
varying correlation factor ρ and N = 5000, (b) BER vs N comparison
of the MA Rx with Mr = 2 for changing correlation factor ρ with
SNR = 20 dB.

APPENDIX

A. Proof of Lemma 1

The value of the summation
∑

n1 6=n2

ρ|n1−n2|, which is used

in the subsequent steps is given by:∑
n1 6=n2

ρ|n1−n2| =
2ρ

1− ρ
(N − 1− ρN

1− ρ
), 0 ≤ ρ < 1. (34)

The expectation of the sum sequence SN can be evaluated
easily as follows:

E [SN ]=E

[∑
n1,n2

ρ|n1−n2| x[n1]x∗[n2]

]
=
∑
n

E
[
|x[n]|2

]
+
∑
n1 6=n2

ρ|n1−n2| E [x[n1]]E [x∗[n2]]

(a)
=
∑
n

E
[
|X|2

]
+
∑
n1 6=n2

ρ|n1−n2| |E [X] |2
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Fig. 8: BER vs SNR comparison for changing antenna elements Mr

at the receiver with ρr = 0.5, ρb = 0.75, ρt = 0.38 and N = 2000:
(a) uniformly distributed AoAs, and (b) narrowly distributed AoAs.

(b)
= NE

[
|X|2

]
+

2ρ

1− ρ
(N− 1− ρN

1− ρ
)|E [X] |2, (35)

where (a) and (b) follow from the assumption that the ambient
sequence x[n] is i.i.d., and the value of summation given
in (34), respectively. It can be easily observed that the ex-
pectation of this sum grows asymptotically of the order of
N , meaning E [SN ] = Θ[n]. Using this, the expectation of
MN = SN

N can be shown to be a constant, whose value is
given in (11).

The variance of the sum sequence SN can first be simplified
as given below:

Var [SN ]

=E

∑
i1,j1

ρ|i1−j1|x[i1]x∗[j1]

∑
i2,j2

ρ|i2−j2|x∗[i2]x[j2]

−E[SN ]
2

=E

[∑
i1

∑
i2

|x[i1]|2|x[i2]|2+2
∑
i1

∑
i2 6=j2

ρ|i2−j2||x[i1]|2x∗[i2]x[j2]
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Fig. 9: (a) BER performance comparison of AR model channel with
that of the channel developed using Jakes’ simulation model, and (b)
Impact of changing timing error on the BER performance.

+
∑
i1 6=j1

∑
i2 6=j2

ρ|i1−j1|+|i2−j2|x[i1]x∗[j1]x∗[i2]x[j2]

]
−E[SN ]

2

(c)
=
∑
i1=i2

E
[
|X|4

]
+

∑
i1 6=i2

1+
∑
i1 6=j1

ρ2|i1−j1|−(
∑
i

1)2

(E[|X|2])2
+2
∑
i1 6=j2

ρ|i1−j2|E
[
X(X∗)2

]
E[X]+2

∑
i1 6=i2

ρ|i1−i2|E
[
(X)2X∗

]
E[X∗]

+
∑
i1 6=j1

ρ2|i1−j1|
∣∣E[X2

]∣∣2+2

{ ∑
i1 6=i2 6=j2

ρ|i2−j2|+
∑

i1 6=j1 6=j2

ρ|i1−j1|+|i1−j2|

−
∑
i,i1 6=i2

ρ|i1−i2|
}
E
[
|X|2

]
|E[X]|2+

∑
i1 6=i2 6=j1

ρ|i1−j1|+|i2−j1|E
[
X2
]
(E[X∗])

2

+
∑

i1 6=j1 6=j2

ρ|i1−j1|+|j1−j2|
(
E
[
X2
])∗

(E [X])
2

+

 ∑
i1 6=j1 6=i2 6=j2

ρ|i1−j1|+|i2−j2|−(
∑
n1 6=n2

ρ|n1−n2|)2

|E[X]|4 , (36)

where (c) follows from the piece-wise separation of different
summations by permuting the indices i1, i2, j1 and j2 of the
first term, and the expansion of the second term E [SN ].

The main objective here is to show that the variance also
grows asymptotically of the order of N . The complete deriva-
tion of the variance expression is conceptually simple but
tedious to present in a limited space. For this reason, we only
provide a sketch of the proof, which is sufficient to understand
the approach. Recall the assumption that the higher order
moments of the sequences x[n] upto the highest order present
in (36) are finite. With this assumption, it is sufficient to prove
that the coefficient of each moment increases of the order of
N . The coefficient of E

[
|X|4

]
is straightforward to obtain and

is given by N . Using (34), it is again straightforward to show
that

∑
i1 6=j1

ρ2|i1−j1| is a function N , and the summations
∑
i1 6=i2

1

and (
∑
i

1)2 are respectively given by N2 and N(N − 1).

Hence, the coefficient of
(
E
[
|X|2

])2
is proportional to N

and increases asymptotically of the order of N . Then, the
coefficients of E

[
X(X∗)2

]
E [X] ,E

[
(X)2X∗

]
E [X∗] and∣∣E [X2

]∣∣2, given by either
∑
i1 6=j1

ρ|i1−j1| or
∑
i1 6=j1

ρ2|i1−j1|,

are already shown to be proportional to N . Similarly, the
summation

∑
i1 6=j1 6=j2

ρ|i1−j1|+|i1−j2| can be evaluated by piece-

wise categorization into different subsets and be shown
to grow of the order of N . In addition, the summations∑
i1 6=i2 6=j2

ρ|i2−j2| and
∑

i,i1 6=i2
ρ|i1−i2| can both be shown to have

the same factor for N2, and hence the coefficients of∣∣E [X2
]∣∣2 ,E [X2

]
(E [X∗])

2 and
(
E
[
X2
])∗

(E [X])
2 all in-

crease at the order of N . Finally, it can also be shown
that

∑
i1 6=j1 6=i2 6=j2

ρ|i1−j1|+|i2−j2| and (
∑

n1 6=n2

ρ|n1−n2|)2 are both

proportional to N(N −1) with the same factor, which also
means that |E [X]|4 grows of the order of N . From this, we
can conclude that Var [SN ] = Θ(N). As a consequence, the
variance of MN = SN

N will be decreasing at the rate of 1/N
asymptotically. This completes the proof.

B. Proof of Lemma 2

When conditioned on x[n], a sample of the received signal
under H0, as given in (12), is a complex Gaussian RV.
As a result, the mean of the received samples can also
be characterized as a complex Gaussian, albeit the samples
correlated with one another. Since the complex Gaussian RV
is completely defined by its mean and variance, we are just
required to derive them. First, the conditional expectation and
variance of an individual sample y[n] can be derived as:

E[y[n]]=E

[(
ρn−1
r hr[1]+

√
1−ρ2

r

{
n−1∑
k=1

ρn−k−1
r gr[k]

})
x[n]+w[n]

]

=

(
ρn−1
r E[hr[1]]+

√
1−ρ2

r

{
n−1∑
k=1

ρn−k−1
r E[gr[k]]

})
x[n]

+E [w[n]]=0,

Var [y[n]] = Var
[
ρn−1
r hr[1]x[n]

]
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+
n−1∑
k=1

Var
[√

1− ρ2
r

{
ρn−k−1
r gr[k]x[n]

}]
+Var [w[n]]

= (ρ2n−2
r +

n−1∑
k=1

(1− ρ2
r)ρ

2n−2k−2)σ2
h|x[n]|2 + σ2

n

= σ2
h|x[n]|2 + σ2

n.

Similarly, the conditional covariance of any two distinct sam-
ples y[i] and y[j] is given by:

Cov [y[i], y[j]]
(a)
= E [y[i]y∗[j]]

=E

[
(ρi+j−2
r |hr[1]|2+

√
1−ρ2

r

j−1∑
k2=1

ρi+j−k2−2
r hr[1]g∗r[k2])x[i]x∗[j]

+ρi−1
r hr[1]x[i]w∗[j] + (

√
1− ρ2

r

i−1∑
k1=1

ρi+j−k1−2
r h∗r [1]gr[k1]

+(1− ρ2
r)

i−1∑
k1=1

j−1∑
k2=1

ρi+j−k1−k2−2
r gr[k1]g∗r [k2])x[i]x∗[j]

+
√

1−ρ2
r

i−1∑
k1=1

ρi−k1−1
r w∗[j]gr[k1]x[i] + ρj−1

r hr[1]x∗[j]w[i]

+
√

1− ρ2
r

j−1∑
k2=1

ρj−k2−1
r w[i]g∗r [k2]x∗[j] + w[i]w∗[j]

]

=σ2
h(ρi+j−2

r +(1−ρ2
r)

min(i,j)−1∑
k=1

ρi+j−2k−2
r )x[i]x∗[j]

= σ2
hρ
|j−i|
r x[i]x∗[j],

where (a) follows from zero valued conditional expectation
of the signal samples. Using the above derivations, the con-
ditional expectation and variance of Z can be evaluated as
follows:

E [Z] = E

[
1

N

N∑
n=1

y[n]

]
=

1

N

(
N∑
n=1

E [y[n]]

)
= 0,

Var [Z] = Var

[
1

N

N∑
n=1

y[n]

]

=
1

N2

 N∑
n=1

Var [y[n]] +
∑
n1 6=n2

Cov [y[n1], y[n2]]


=

1

N2
(σ2
h

N∑
n=1

|x[n]|2+Nσ2
n+σ2

h

∑
n1 6=n2

ρ|n1−n2|
r x[n1]x∗[n2])

=
1

N

(
σ2
hMN + σ2

n

) (b)
≈ 1

N

(
σ2
hE [MN ] + σ2

n

)
=

1

N
(σ2
hE
[
|X|2

]
+

2ρr
1−ρr

(1− 1−ρNr
N(1−ρr)

)|E [X]|2+σ2
n), (37)

where (b) results from the approximation of MN by its
expectation, given in Lemma 1.

C. Proof of Lemma 3

Observe that when conditioned on the ambient signal x[n],
the three signal components of the received signal under the

alternate hypothesis H1: (i) direct signal from ambient source,
(ii) backscatter signal, and (iii) receiver noise, are independent
of each other.

y[n] = hr[n]x[n] + αhb[n]ht[n]x[n]︸ ︷︷ ︸
yb[n]

+w[n] (38)

This means that the expectation and variance of the sum
can be derived using just the expectation and variance of each
component. Since, we have already computed the expectation
and variance of the direct signal and the receiver noise combi-
nation (in Lemma 3 for H0), it is now enough to compute the
expectation and variance of the backscatter component yb[n].

To derive that, we further condition the signal on hb[n] since
it will preserve and allow us to use the additive property of
the Gaussian RVs. The conditional expectation and variance
of an individual sample of the backscatter signal yb[n] and the
conditional covariance of any two distinct samples y[i] and
y[j] can be evaluated as:

E [yb[n]] = E [αhb[n]ht[n]x[n]] = αhb[n]x[n]E [ht[n]] = 0,

Var [yb[n]] = Var [αhb[n]ht[n]x[n]]

= |α|2|hb[n]x[n]|2Var [ht[n]] = |α|2σ2
h|hb[n]x[n]|2,

Cov [yb[i], yb[j]] = |α|2hb[i]h∗b [j]x[i]x∗[j]Cov [ht[i], ht[j]]

= |α|2σ2
hρ
|j−i|
t hb[i]h

∗
b [j]x[i]x∗[j].

The conditional expectation and variance of the mean of sig-
nal samples yb[n] can be determined from their corresponding
expectation and variance of the individual samples as follows:

E

[
1

N

N∑
n=1

yb[n]

]
=

1

N

(
N∑
n=1

E [yb[n]]

)
= 0,

Var

[
1

N

N∑
n=1

yb[n]

]

=
1

N2

( N∑
n=1

Var [yb[n]] +
∑
n1 6=n2

Cov [yb[n1], yb[n2]]
)

=
1

N2
(|α|2σ2

h

N∑
n=1

|hb[n]x[n]|2

+|α|2σ2
h

∑
n1 6=n2

ρ
|n1−n2|
t hb[n1]h∗b [n2]x[n1]x∗[n2])

=
1

N
|α|2σ2

h

1

N

∑
1≤n1,n2≤N

ρ
|n1−n2|
t hb[n1]h∗b[n2]x[n1]x∗[n2]︸ ︷︷ ︸

Mb
N

. (39)

The sequence M b
N , similar to MN , is a function of the sum

variable of the ambient sequence x[n] and can be shown to
asymptotically converge to its expectation. This expected value
of M b

N can be evaluated as follows:

E
[
M b
N

]
=E

 1

N

∑
1≤n1,n2≤N

ρ
|n1−n2|
t hb[n1]h∗b [n2]x[n1]x∗[n2]


=

1

N
E

 ∑
1≤n≤N

|hb[n]x[n]|2+
∑
n1 6=n2

ρ
|n1−n2|
t hb[n1]h∗b[n2]x[n1]x∗[n2]


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=
1

N
(
∑

1≤n≤N

E
[
|hb[n]|2

]
E
[
|x[n]|2

]
+
∑
n1 6=n2

ρ
|n1−n2|
t E [hb[n1]h∗b [n2]]E [x[n1]]]E [x∗[n1]])

(b)
= σ2

h

∑
1≤n≤N

E
[
|X|2

]
N

+σ2
h

∑
n1 6=n2

(ρtρb)
|n1−n2| |E[X]|2

N

(c)
= σ2

hE
[
|X|2

]
+σ2

h

2ρtρb
1−ρtρb

(
1− 1−ρNt ρNb

N(1−ρtρb)

)
|E[X]|2,

where (b) follows from the assumption that the ambient
sequence x[n] is i.i.d. and the expectation of hb[n1]h∗b [n2]
which is given by σ2

hρ
|n1−n2|, and (c) follows from the value

of summation
∑

n1 6=n2

ρ2|n1−n2| that can be derived using (34)

in Lemma 1.
The conditional variance of the mean of yb[n] can thus be

approximated using E
[
M b
N

]
as:

Var

[
1

N

N∑
n=1

yb[n]

]
≈ 1

N

(
|α|2σ2

hE
[
M b
N

])
=

1

N

(
|α|2σ4

hE
[
|X|2

]
+|α|2σ4

h

2ρtρb
1−ρtρb

(
1− 1−ρNt ρNb
N(1−ρtρb)

)
|E[X]|2

)
.

(40)

The final step is to obtain the variance of mean Z of the signal
samples under H1 by adding the individual variances in (37)
and (40) respectively. This completes the proof.

D. Proof of Theorem 1

The optimal decision rule for the receiver is evaluated
through the comparison of the conditional PDFs of the null
and alternate hypotheses H0 and H1 derived in Lemmas 2
and 3, which is given by [2]:

ln
[
fZ|H0

(z)
]
≷0

1 ln
[
fZ|H1

(z)
]

− ln
(
VarSA

0

)
− |z|2

VarSA
0

≷0
1 − ln

(
VarSA

1

)
− |z|2

VarSA
1

=⇒ |z|2 ≷1
0 ln

(
VarSA

1

VarSA
0

)
VarSA

1 VarSA
0

VarSA
1 −VarSA

0

,

where z is the mean of signal samples. The value of the
optimal detection threshold TSA is given by the decision rule.

The decision rule of the optimal detection is only dependent
on |Z|2. The variable |Z|2 is an exponential distributed RV,
whose mean parameter equals the variance of the complex
Gaussian. Assuming that the prior probabilities of the two
hypotheses are equal, the conditional BER can be derived as:

PSA(e) = P (H0)PSA(e|H0) + P (H1)PSA(e|H1)

=
1

2

(
Pr
{
|Z|2 > TSA|H0

}
+ Pr

{
|Z|2 < TSA|H1

})
=

1

2

(
1− Fexp

(
TSA,VarSA

0

)
+ Fexp

(
TSA,VarSA

1

))
=

1

2
− 1

2
e
− TSA

VarSA1 +
1

2
e
− TSA

VarSA0 ,

where FExp(x, λ) is the cumulative distribution function of
the exponential RV |Z|2.

E. Proof of Lemma 4

The antenna gain ã∗K̂−1
W̃

ã of the receiver is dependent on
the inverse of K̂W̃, for which closed-form expression can
be obtained. The matrix K̂W̃ can be re-written as K̂W̃ =
IMr−1+JMr−1, where IMr−1 is an identity matrix and JMr−1

is an all-ones matrix whose rank will be one. Therefore,
JMr−1 can be simplified using singular value decomposition
(SVD) as u1σ1v

T
1 , where the unitary matrices are given by

u1 = v1 = −1√
Mr−1

[
1 1 . . . 1

]T
, and the non-zero

singular value σ1 = Mr − 1. Due to the symmetry, this
can be re-written in the form JMr−1 = uuT , where u =[
1 1 . . . 1

]T
. Now, according to the Sherman-Morrison

formula [48], inverse of the sum of a invertible matrix A
and the outer product uvT is given by

(
A + uvT

)−1
=

A−1 − A−1uvTA−1

1 + vTA−1u
. The Sherman-Morrison formula is

considered as a special case of the Woodbury matrix identity
[48]. Using this, the inverse of K̂W̃ can be derived as:

K̂−1
W̃

= IMr−1 −
uuT

1 + uTu
= IMr−1 −

JMr−1

Mr
. (41)

The expression of the SNR gain ã∗K̂−1
W̃

ã can be simplified
as follows:

ã∗K̂−1
W̃

ã =

 e−j(φ2−φ1) − 1
...

e−j(Mr−1)(φ2−φ1) − 1


T


Mr−1
Mr

−1
Mr

. . . −1
Mr

...
...

. . .
...

−1
Mr

−1
Mr

. . . Mr−1
Mr


 ej(φ2−φ1) − 1

...
ej(Mr−1)(φ2−φ1) − 1


=

Mr−1∑
i=1

[
eji(φ2−φ1) − 1

] [
e−ji(φ2−φ1) − 1

]
−
SMr−1S

∗
Mr−1

Mr

= −SMr−1 − S∗Mr−1 −
SMr−1S

∗
Mr−1

Mr
,

where SMr−1 =
Mr−1∑
i=1

[
eji(φ2−φ1) − 1

]
is the summation of all

the elements in the weight vector. Since, SMr−1 is a geometric
sum it can be simplified, and the sum SMr−1 + S∗Mr−1 and
product SMr−1S

∗
Mr−1 can be derived as following:

SMr−1 + S∗Mr−1

= 2
sin
(

(Mr − 1)φ2−φ1

2

)
sin
(
φ2−φ1

2

) cos

(
Mr

2
(φ2−φ1)

)
−2(Mr−1)

SMr−1S
∗
Mr−1 =

sin2
(

(Mr − 1)φ2−φ1

2

)
sin2

(
φ2−φ1

2

) + (Mr − 1)2

− 2(Mr − 1)
sin
(

(Mr − 1)φ2−φ1

2

)
sin
(
φ2−φ1

2

) cos

(
Mr

2
(φ2 − φ1)

)
.

Using these simplifications, the final expression for the SNR
gain can be determined as follows:

ã∗K̂−1
W̃

ã
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= Mr−
1

Mr
− 2

Mr

sin
(

(Mr−1)φ2−φ1

2

)
sin
(
φ2−φ1

2

) cos

(
Mr

2
(φ2 − φ1)

)

− 1

Mr

sin2
(

(Mr−1)φ2−φ1

2

)
sin2

(
φ2−φ1

2

) .

F. Proof of Lemma 5

The effective signal yeff [n], given in (23), under H0 is a
complex Gaussian RV with variance σ2

n. Hence, the mean Z of
the received samples under H0 is a complex Gaussian RV with
variance VarMA

0 =
σ2
n

N . On the other hand, yeff [n] under H1

is the sum of a scaled version of the backscatter signal yb[n]
in Lemma 3 with the same receiver noise variance. Using the
procedure similar to the ones in Lemmas 2 and 3, the mean
Z of the received samples under H1 can also be shown to
follow a complex Gaussian distribution, the variance of which
is given by

VarMA
1

=
G|α|2σ4

h

{
E
[
|X|2

]
+ 2ρtρb

1−ρtρb

(
1− 1−ρNt ρ

N
b

N(1−ρtρb)

)
|E[X]|2

}
+σ2

n

N
.

G. Proof of Theorem 2

By comparing the conditional PDFs of the two hypotheses
given in (25), the optimal detection threshold TMA can be
obtained. The conditional BER, evaluated using a procedure
similar to the one used in the case of SA receiver, is a function
of the phase-offsets of the DL and BL links, and the average
BER is obtained by marginalizing the conditional BER over
the variables θ1 and θ2. The assumption here is that θ1 and
θ2 are i.i.d. and uniformly distributed over (−π, π], and the
final expression in the result can be obtained by marginalizing
over this range of θ1 and θ2. One can choose more complex
distributions of AoAs to model different scenarios.
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